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Abstract. Carbon dioxide has a huge impact on the increase of greenhouse gas 

formation causing global warming and climate change. The most effective 

method to capture CO2 is chemical absorption using potassium carbonate 

(K2CO3) solution and amines as additive to enhance the absorption rate. CO2 

solubilities in 30% of K2CO3 and 5% of the total composition of mixed 

methyldiethanolamine (MDEA)–diethanolamine (DEA) / piperazine (PZ)-DEA 

solutions at various temperatures of 303.15-323.15 K and atmospheric pressure 
are reported. The solubility data were measured using an equilibrium cell 

apparatus with the N2O analogy method. The E-NRTL model was used to 

correlate the experimental data accurately. The binary interaction parameters of 

the model for the CO2-K2CO3-MDEA-DEA-H2O and CO2-K2CO3-PZ-DEA-H2O 

systems were obtained. The CO2 physical solubility in 30% of K2CO3, 5% of PZ, 

and 0% of DEA at 303.15 K had the highest value, while the Henry constant of 

CO2 in this solution had the lowest value. The CO2 loading increased with 

increasing partial pressure of CO2, while the CO2 solubility decreased with 

increasing temperature. Any increase in MDEA concentration from 0% to 5% 

enhanced the CO2 partial pressure, otherwise, an increase in PZ concentration 

from 0% to 5% decreased the CO2 partial pressure. 

Keywords: amines; binary interaction parameter; CO2 solubility; E-NRTL model; N2O 

analogy. 

1 Introduction 

The increase of greenhouse gas in the atmosphere is the main cause of global 
warming and climate change in the world today. Herein, CO2 is the most 

dominant cause. In the industrial sector, CO2 gas is contained in flue gas 

produced by industrial equipment. The flue gas is carried to the stack and 

discharged into the atmosphere, which causes rising CO2 levels and further 
causes global warming [1]. Indonesia is in the top 10 of the largest CO2 emitters 

in the world, accounting for 2.31% of global CO2 emissions via the energy 

sector and deforestation in 2014-2015 [2].  
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There are several methods that can be used to capture CO2 from the gas stream. 

Chemical absorption is a technology that is well developed and has been applied 

in a variety of commercial processes [3]. Cullinane [4] found that the most 

effective solvent to capture CO2 gas is alkanolamine and ‘hot’ K2CO3. Types of 
amine solvents that have been widely investigated are MEA, DEA, MDEA, 

TEA, PZ, AMP, and others [5-9].  

The most important parameter to determine the equilibrium concentration in the 
liquid phase and the CO2 absorption rate is the physical solubility of CO2 [4,10]. 

These data are required as a reference for designing absorption columns for 

industry. Physical solubility of CO2 in amine solvent cannot be measured 

directly due to a chemical reaction between CO2 and amines. CO2 reacts rapidly 
with amine so that the physical solubility cannot be determined [4,10]. 

Therefore, Clarke [11] used the nitrous oxide (N2O) analogy method to estimate 

the solubility of CO2 gas in amine solvent. Carbon dioxide and nitrous oxide 
have the same molecular structure, molecular interaction parameter, mass, and 

electron configuration. Therefore, the ratio of the CO2 and N2O solubilities 

(HCO2 / HN2O) in organic solvent and water is assumed to be similar at the same 
temperature. 

Several researchers [4,12-14] have indicated that the use of K2CO3 as solvent, 

which blends with amine as promotor, can improve the performance of K2CO3 

and enhance the absorption rate. The objective of this study was to determine 
the CO2 solubility in 30% of K2CO3 as solvent and 5% of MDEA-DEA/ PZ-

DEA mixtures as promotor at various temperatures between 303.15 and 323.15 

K and atmospheric pressure by an equilibrium cell apparatus with the N2O 
analogy method. The experimental data were correlated using the E-NRTL 

model. 

2 Experiment 

2.1 Materials 

MDEA and PZ with purity levels higher than 99% were purchased from Merck, 
Germany. DEA with purity level higher than 98% was purchased from Sigma-

Aldrich, USA. Nitrous oxide with purity level higher than 99% and 20% CO2-

80% N2 gas mixture were purchased from local company Trigases. Potassium 

carbonate with 99% purity was purchased from local company Bratachemical. 
The distilled water used in this study was provided by our laboratory. All 

materials were used without additional purification.  
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2.2 Experimental Apparatus and Procedures 

The experiment of this study was conducted at 303.15-323.15 K and 

atmospheric pressure to obtain the solubility of CO2 in 30% of K2CO3 solution 
and 5% of amine (MDEA-DEA) and (PZ-DEA) mixtures with the N2O analogy 

method using an equilibrium cell apparatus. The apparatus used in this study 

was based on the apparatus used by Haimour and Sandall [10] and Al-Ghawas, 

et al. [15]. It  has been described and validated in our previous study [16].  

The solubility of N2O in solution can be obtained from Eq. (1), in which 
∗

ONC
2

 

is the N2O concentration at equilibrium. 
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The partial pressure of N2O is determined from the atmospheric pressure (total 

pressure measured), which is corrected with the vapor pressure of water [15].
 
 

The solubility of CO2 can be estimated by the N2O analogy method, as 
represented in Eq. (2), after the solubility of N2O has been determined 

experimentally. 

 ( )
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The solubility of CO2 in water, H
o
CO2, and the solubility of N2O in water, H

o
N2O, 

are calculated from [17]. 

The CO2 partial pressure can be calculated experimentally with Eq. (3) as 
follows: 

 2 22

exp *

CO COCO
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 (3)
      

in which 
2CO

C ∗

 
is the CO2 concentration dissolved in the solution at equilibrium. 

The CO2 concentration dissolved at equilibrium was determined by passing CO2 
gas into the equilibrium cell apparatus with the same method as in the N2O 

experiment. Thus by titration, the concentration of each component in the 

solution can be obtained. 

The E-NRTL model was used to correlate the experimental data. The E-NRTL 
model contains two contributions. The first one, developed from the local 

interactions, is determined by the NRTL model [18]. The other one, developed 
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from the long-range interactions, is calculated by the Pitzer-Debye-Huckel 

(PDH) model [19]. The activity coefficient (γ) of the E-NRTL model for each 

component has been described in previous researches [5,16,18]. The deviation 

of the CO2 partial pressure calculated by the E-NRTL model from the 
experimental data can be determined with Eq. (4), as follows: 

  

exp exp

( ) ( ) ( )1 2 2 2
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M calP P P
CO i CO i CO ii

Deviation
M

  
  −∑

  =   
 = ×
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3 Results and Discussion 

The apparatus validation of this study was performed using water as solvent at 

303.15-323.15 K. The validation was based on the previous studies by Versteeg 

and Swaaij [20], Li and Lai [21], and Al-Ghawas, et al. [15]. Validation of the 

apparatus has been done in our previous study [16]. The Henry constant of CO2 
in 30% of K2CO3, 5% of PZ, and 0% of DEA at 303.15 K had the lowest value. 

This indicates that the CO2 physical solubility in this solution is the greatest of  

other compositions, as shown in Figures 1 and 2. Furthermore, these figures 
present the relationship between 1/T and the Henry constant of CO2. The higher 

the value of 1/T, the lower the value of the HCO2. This means that an increase in 

temperature can enhance the value of the HCO2. The higher the value of the HCO2, 
the more difficult the CO2 gas is absorbed in the solution. Thus, the physical 

solubility of CO2 in the solution will be greater at lower temperature. 

After the equilibrium was reached in the equilibrium cell, samples were taken 

for conducting a composition analysis. The compositions of carbonate (CO3
2-

) 
and bicarbonate (HCO3

-
) in the solution were analyzed by titration. The analysis 

of the HCO3
-
 composition in the solution was conducted to determine the 

amount of CO2 reacted. The amount of CO2 absorbed is equal to the amount of 
CO2 reacted and dissolved (did not react) in the solution. The reaction that 

occurs in the solution at equilibrium is shown in Eq. (5). 

 K2CO3  +  CO2  +  H2O ⇌ 2 KHCO3   (5) 

The formation of HCO3
- 

in the solution will increase with the addition of 

promotor amine. The reaction between amine (MDEA) and CO2 can be 

represented by Eq. (6), 
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                                         + CO2+ H2O ⇌ MDEAH
+
 + HCO3

-
   (6) 

 

Thus the amount of CO2 reacted can be increased. 

 

Figure 1 Physical solubility of CO2 in 30% K2CO3, 0-5% MDEA, and 0-5% 

DEA at 303.15-323.15 K. 

 

Figure 2 Physical solubility of CO2 in 30% K2CO3, 0-5% PZ, and 0-5% DEA at 

303.15-323.15 K. 
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Figures 3 to 6 show the relationship between temperature and amount of CO2 

reacted and CO2 dissolved. The reacted CO2 decreases with temperature 

increasing from 303.15 to 323.15 K.  

 

Figure 3 Amount of the CO2 reacted in 30% K2CO3, 0-5% MDEA, and 0-5% 

DEA at 303.15-323.15 K. 

 

Figure 4 Amount of CO2 reacted in 30% K2CO3, 0-5% PZ, and 0-5% DEA at 

303.15-323.15 K. 
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Figure 5 Amount of CO2 dissolved in 30% K2CO3, 0-5% MDEA, and 0-5% 

DEA at 303.15-323.15 K. 

 

Figure 6 Amount of CO2 dissolved in 30% K2CO3, 0-5% PZ, and 0-5% DEA at 

303.15-323.15 K. 

The increase in temperature can either increase or reduce the absorption rate of 
CO2, depending on which factors are decisive. In this case, the solubility is the 
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more dominant factor. The CO2 solubility decreases with increasing 

temperature. Consequently, the increase in temperature decreases the absorption 

rate of CO2. Furthermore, it decreases the amount of CO2 absorbed, thus the 

amount of dissolved CO2 and reacted CO2 also decreases. It can also be seen 
that the amount of the reacted CO2 in the K2CO3-PZ-DEA-H2O solution is 

greater than that in the K2CO3-MDEA-DEA-H2O solution. This indicates that 

the PZ-DEA mixture has the ability to react with CO2 faster and to a higher 
degree than the MDEA-DEA mixture. The equilibrium constant (K) used by 

Austgen and Rocelle [22] was applied in this study to calculate the amount of 

dissolved CO2. 

Based on Figures 7 and 8, the E-NRTL model can correlate well the 
experimental data for the CO2-K2CO3-MDEA-DEA-H2O and CO2-K2CO3-PZ-

DEA-H2O systems with a deviation of 8.82% and 2.53% respectively. This 

shows that an increase in CO2 partial pressure increases CO2 loading. The CO2 
loading can be determined from the ratio of the total amount of absorbed CO2 to 

the amount of K+ and amines in the solution. The greater the CO2 loading, the 

greater the amount of absorbed CO2. 

 

Figure 7 Comparison of calculated CO2 partial pressure by E-NRTL model 
with experimental data of CO2-K2CO3-(MDEA+DEA)-H2O system at 303.15-

323.15 K. 
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Figure 8 Comparison of calculated CO2 partial pressure by E-NRTL model 

with experimental data of CO2-K2CO3-(PZ+DEA)-H2O system at 303.15-

323.15 K. 

Furthermore, it can also be seen that the mixture of MDEA-DEA as promotor 

enhances the partial pressure of CO2 from 0.9 to 4.5 kPa, while the CO2 loading 
ranged from 0.14 to 0.19 for any increase of MDEA concentration from 0% to 

5%. On the other hand, an increase of PZ concentration decreases the CO2 

partial pressure. From 5% to 0% of PZ, the CO2 partial pressure ranged from 

0.7 to 1.5 kPa and the CO2 loading ranged from 0.13 to 0.19 at 303.15-323.15 
K. 

At the same temperature and composition of the MDEA-DEA and PZ-DEA 

mixtures, the solubility of CO2 in K2CO3-PZ-DEA-H2O solution was higher 
than that in K2CO3-MDEA-DEA-H2O solution. This can be seen from the 

Henry constant value and the CO2 partial pressure in the CO2-K2CO3-PZ-DEA-

H2O system, which are lower than that in the CO2-K2CO3-MDEA-DEA-H2O 
system. The partial pressure of CO2 is at equilibrium with the composition of 

CO2 dissolved in the solution. The lower the CO2 partial pressure, the lower the 

amount of CO2 dissolved. Thus, the PZ-DEA promotor is able to react with CO2 

to a higher degree than the MDEA-DEA promotor. 

There are interactions between molecule-ions (cation, anion), ion-molecule, and 

molecule-molecule in the electrolyte solution. As shown in Tables 1 and 2, the 

binary interaction parameters of the E-NRTL model were obtained in this study 
by fitting the experimental data and by minimizing the deviation between the 

calculated and the experimental CO2 partial pressures as listed in Eq. (4). 
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Table 1 Binary interaction parameters of the E-NRTL model for CO2-K2CO3-

MDEA-DEA-H2O system. 

Interaction Pair A B 

H2O-K+,CO3
2- 0.2906 1581.9477 

K+,CO3
2--H2O 16.8260 -376.9776 

H2O-K+,HCO3
- 3.5466 2862.9717 

K+,HCO3
--H2O 1.6992 -601.0102 

CO2-K
+,CO3

2- 18.1601 0.0190 

K+,CO3
2--CO2 -3.6034 0.0020 

CO2-K
+,HCO3

- 13.7406 0.0050 

K+,HCO3
--CO2 -7.5882 0.0116 

MDEA-K+,CO3
2- 15.9018 -0.0022 

K+,CO3
2—MDEA -16.6288 0.0080 

MDEA-K+,HCO3
- 13.4431 0.0312 

K+,HCO3
—MDEA -9.9209 -0.0119 

DEA-K+,CO3
2- 14.2215 0.0017 

K+,CO3
2—DEA -49.7068 -0.0265 

DEA-K+,HCO3
- 18.1363 0.00003 

K+,HCO3
—DEA -32.0727 0.0032 

CO2-H2O 

H2O-CO2 

H2O-MDEA 

MDEA-H2O 

MDEA-CO2 

CO2-MDEA 

H2O-DEA 

DEA-H2O 

DEA-CO2 

CO2-DEA 

DEA-MDEA 

MDEA-DEA 

27.6063 

-3.9847 

38.5937 

8.4030 

6.9470 

-0.0013 

110.9578 

8.2146 

-4.0545 

19.0643 

4.3455 

15.7693 

-8428.9780 

1080.0234 

-1547.9046 

-1029.9708 

0.0222 

0.0003 

1317.9671 

-718.0496 

-0.0053 

0.0992 

0.0154 

0.0505 
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Table 2 Binary interaction parameters of the E-NRTL model for CO2-K2CO3-

PZ-DEA-H2O system. 

Interaction Pair A B 

H2O-K+,CO3
2- 6.5868 1582.0180 

K+,CO3
2--H2O 22.0015 -376.9981 

H2O-K+,HCO3
- 13.4615 2862.9924 

K+,HCO3
--H2O -2.3622 -600.9386 

CO2-K
+,CO3

2- 11.9452 -0.0003 

K+,CO3
2--CO2 6.9734 0.0043 

CO2-K
+,HCO3

- 12.4738 -0.0118 

K+,HCO3
--CO2 18.0367 0.0053 

PZ-K+,CO3
2- 21.8881 0.0056 

K+,CO3
2—PZ -1.9255 -0.0031 

PZ-K+,HCO3
- 15.9018 0.0148 

K+,HCO3
—PZ -6.9958 0.0035 

DEA-K+,CO3
2- 12.1837 -0.0010 

K+,CO3
2—DEA -9.3069 -0.0008 

DEA-K+,HCO3
- 13.9665 0.0038 

K+,HCO3
—DEA -3.4174 0.0007 

CO2-H2O 

H2O-CO2 

H2O-PZ 

PZ-H2O 

PZ-CO2 

CO2-PZ 

H2O-DEA 

DEA-H2O 

DEA-CO2 

CO2-DEA 

DEA-PZ 

PZ-DEA 

31.7369 

-2.3121 

-8.0646 

-1.3528 

4.7064 

-0.0003 

-6.5097 

1.4480 

-3.4001 

3.5859 

-0.3741 

-2.5949 

-8428.9770 

1080.0703 

-0.0233 

-0.0209 

0.0182 

0.0003 

1317.6078 

-718.0867 

-0.0127 

0.0116 

-0.0009 

-0.0080 
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4 Conclusions 

The physical solubility of CO2 in K2CO3 solution with a mixture of amines had 

the greatest value in the composition of 30% K2CO3, 5% PZ and 0% DEA at 
303.15 K, while the Henry constant of CO2 in this solution had the lowest value. 

An increase in CO2 partial pressure increased the value of CO2 loading. The 

solubility of CO2 decreased with an increase in temperature. In a mixed solution 

of K2CO3 with MDEA-DEA promotor, any increase in MDEA concentration 
from 0% to 5% increased the partial pressure of CO2 from 0.9 to 4.5 kPa, while 

the CO2 loading ranged from 0.14 to 0.19. Otherwise, the CO2 partial pressure 

decreased with an increase in PZ concentration. From 5% to 0% of PZ 
concentration, the CO2 partial pressure ranged from 0.7 to 1.5 kPa and the CO2 

loading ranged from 0.13 to 0.19 at 303.15-323.15 K. The E-NRTL model can 

correlate well the experimental data. The binary interaction parameters of the E-
NRTL model were also obtained in this study. 
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